|
|
|
|
|
Research progress on the injury mechanisms of post-resuscitation myocardial dysfunction |
Chen Li-min, Yang Min |
The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China |
|
|
Abstract Ischemia reperfusion injury (IRI) is a complex pathophysiological process involving multiple cells and multiple mediators. It is mainly seen in cardiopulmonary cerebral resuscitation, hemorrhagic shock, acute myocardial infarction and organ transplantation. Post-resuscitation myocardial dysfunction (PRMD) caused by IRI is a common clinical critical illness. Clinical workers are confused by the high mortality rate and poor prognosis. Oxidative stress mechanism in the process of IRI participates in the pathological process of the damage mechanism of PRMD. Recently, studies have shown that the oxidative phosphorylation associated with myocardial energy metabolism, the Notch pathway of cell proliferation, differentiation and apoptosis, and the immune system dysfunction all play a role in the entire pathophysiological process of PRMD. This article reviews the progress of PRMD injury mechanisms and aims to further elucidate the pathogenesis of PRMD and provide a theoretical basis for follow-up scientific research.
|
|
Corresponding Authors:
Yang Min, E-mail: 512130761@qq.com
|
|
|
|
[1]Kleinman ME, Perkins GD, Bhanji F, et al. ILCOR scientific knowledge gaps and clinical research priorities for cardiopulmonary resuscitation and emergency cardiovascular care: a consensus statement[J]. Circulation, 2018, 137(22): e802-e819.
[2]Bagheri F, Khori V, Alizadeh AM, et al. Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies[J]. Life Sci, 2016, 165: 43-55.
[3]Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117: 76-89.
[4]Cabrera-Fuentes HA, Aragones J, Bernhagen J, et al. From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research”[J]. Basic Res Cardiol, 2016, 111(6): 69.
[5]汪永生,王连生. 治疗性低温处理心肌缺血/再灌注损伤的研究进展[J]. 中国急救医学, 2017, 37(9): 855-859.
[6]Heusch G, Kleinbongard P. Ivabradine: cardioprotection by and beyond heart rate reduction[J]. Drugs, 2016, 76(7): 733-740.
[7]Zaha VG, Qi D, Su KN, et al. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia [J]. J Mol Cell Cardiol, 2016, 91: 104-113.
[8]Daskalopoulos EP, Dufeys C, Bertrand L, et al. AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation [J]. J Mol Cell Cardiol, 2016, 91: 188-200.
[9]Chang W, Zhang M, Li J, et al. Berberine attenuates ischemia-reperfusion injury via regulation of adenosine-5′-monophosphate kinase activity in both non-ischemic and ischemic areas of the rat heart[J]. Cardiovasc Drugs Ther, 2012, 26(6): 467-478.
[10]Timmermans AD, Balteau M, Gélinas R, et al. A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake [J]. Am J Physiol Heart Circ Physiol, 2014, 306 (12): H1619-1630.
[11]Morrison A, Chen L, Wang J, et al. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart[J]. FASEB J, 2015, 29 (2): 408-417.
[12]Ma Y, Wang J, Gao J, et al. Antithrombin up-regulates AMP-activated protein kinase signaling during myocardial ischaemia/reperfusion injury[J]. Thromb Haemost, 2015, 113 (2): 338-349.
[13]Kambara T, Shibata R, Ohashi K, et al. C1q/tumor necrosis factor-related protein 9 protects against acute myocardial injury through an adiponectin receptor IAMPK-dependent mechanism[J]. Mol Cell Biol, 2015, 35 (12): 2173-2185.
[14]Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, et al. N-terminome analysis of the human mitochondrial proteome[J]. Proteomics, 2015, 15 (14): 2519-2524.
[15]Mnatsakanyan N, Beutner G, Porter GA, et al. Physiological roles of the mitochondrial permeability transition pore[J]. J Bioenerg Biomember, 2017, 49 (1): 13-25.
[16]Biasutto L, Azzolini M, Szabò I et al. The mitochondrial permeability transition pore in AD 2016: An update[J]. Biochim Biophys Acta, 2016, 1863 (10): 2515-2530.
[17]Ghaderi S, Alidadiani N, Dilaver N, et al. Role of glycogen synthase kinase following myocardial infarction and ischemia-reperfusion[J]. Apoptosis, 2017, 22 (7): 887-897.
[18]Ferrari R, Rizzo P. The Notch pathway: a novel target for myocardial remodelling therapy[J]. Eur Heart, 2014, 35 (32): 2140-2145.
[19]Li Y, Hiroi Y, Ngoy S, et al. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction[J]. Circulation, 2011, 123(8): 866-876.
[20]周学亮,方义湖,赵勇. Notch1减轻心肌缺血再灌注损伤作用的研究[J]. 中华医学杂志, 2016, 96 (20): 1591-1596.
[21]Nistri S, Sassoli C, Bani D. Notch Signaling in Ischemic Damage and Fibrosis: Evidence and Clues from the Heart[J]. Front Pharmacol, 2017, 8: 187.
[22]Boopathy AV, Martinez MD, Smith AW, et al. Intramyocardial delivery of notch ligand-containing hydrogels improves cardiac function and angiogenesis following infarction[J]. Tissue Eng Part A, 2015, 21(17-18): 2315-2322.
[23]Felician G, Collesi C, Lusic M, et al. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction[J]. Circ Res, 2014, 115(7): 636-649.
[24]Zhang M, Pan X, Zou Q, et al. Notch3 Ameliorates Cardiac Fibrosis After Myocardial Infarction by Inhibiting the TGF-β1/Smad3 Pathway[J].Cardiovasc Toxicol, 2016, 16(4): 316-324.
[25]Meng X, Yang J, Dong M, et al. Regulatory T cells in cardiovascular diseases[J]. Nat Rev Cardiol, 2016, 13(3): 167-179.
[26]Wang YP, Xie Y, Ma H, et al. Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target[J]. Int J Cardiol, 2016, 203: 923-928.
[27]Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: Multiple players, dynamicroles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87.
[28]Cohen I, Rider P, Vornov E, et al. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity [J]. Sci Rep, 2015, 5: 14756.
[29]Mauro AG, Mezzaroma E, Torrado J, et al. Reduction of Myocardial ischemia-reperfusion injury by inhibiting interleukin-1 alpha [J]. J Cardiovasc Pharmacol, 2017, 69(3): 156-160.
[30]Toldo S, Mezzaroma E, Mauro AG, et al. The inflammasome in myocardial injury and cardiac remodeling [J]. Antioxid Redox Signal, 2015, 22(13): 1146-1161.
[31]Sugiyama K, Muroi M, Kinoshita M, et al. NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol [J]. J Toxicol Sci, 2016, 41(2):273-279.
[32]Liu X, Yu Z, Huang X, et al. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway [J]. Am J Transl Res, 2016, 8(12): 5169-5186.
[33]Lu M, Tang F, Zhang J, et al. Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of Toll-like receptor 4/nuclear factor-kappaB signaling pathway [J]. Phytother Res, 2015, 29(4): 599-606.
[34]Han D, Wei J, Zhang R, et al. Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling [J]. Sci Rep, 2016, 6: 35319. |
|
|
|