|
|
|
|
|
Research progress on the protective mechanism of methylene blue against cerebral ischemia and reperfusion injury |
Su Cheng-yang, Yin Lu-lu, Li Xiao-yan, Zhong Chun-ting, Geng Nan, Pang Yan, Li Pei-jie, Cao Wen |
Intensive Care Unit, the Second Hospital of Lanzhou University, Lanzhou 730030, China |
|
|
Abstract Brain is the most sensitive organ to ischemia and hypoxia of human body. Various causes of cerebral ischemia, can cause ischemic injury to the brain, but in the subsequent treatment of reperfusion after reperfusion will cause a large number of reactive oxygen species produced through a variety of molecular mechanisms ultimately lead to neuronal cells necrosis or apoptosis initiating reperfusion injury. Methylene blue is a hotspot drug for the study of nervous system diseases. It has antioxidant properties and can quickly cross the blood-brain barrier and has a protective effect on neurons in the brain. This article reviews the mechanism of cerebral ischemia-reperfusion injury and the protective mechanism of methylene blue on cerebral ischemia-reperfusion injury.
|
|
Corresponding Authors:
Li Pei-jie, E-mail: lipeijielanzhou@hotmail.com
|
|
|
|
[1]Chouchani ET, Pell VR, James AM, et al. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury[J]. Cell Metab, 2016, 23(2):254-263.
[2]Lu Q, Tucker D, Dong Y, et al. Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia[J]. Mol Neurobiol, 2016, 53(8):5344-5355.
[3]Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome coxidase[J]. Free Radic Res, 2012, 46(11):1313-1326.
[4]Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3):909-950.
[5]Raz L, Zhang QG, Zhou CF, et al. Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat[J]. PloS One, 2010, 5(9):e12 606.
[6]Lu Q, Wainwright MS, Harris VA, et al. Increased NADPH oxidase-derived superoxide is involved in the neuronal cell death induced by hypoxia-ischemia in neonatal hippocampal slice cultures[J]. Free Radic Biol Med, 2012, 53(5):1139-1151.
[7]Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle[J]. Am J Physiol Cell Physiol, 2004, 287(4):C817-833.
[8]Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2(1):702-714.
[9]Chan PH. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia[J]. Neurochem Res, 2004, 29 (11): 1943-1949.
[10]Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection[J]. Antioxid Redox Signal, 2011, 14(8):1505-1517.[11]Sanderson TH, Reynolds CA, Kumar R, et al. Molecular Mechanisms of Ischemia-Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation[J]. Mol Neurobiol, 2013, 47(1):9-23.
[12]Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke[J]. J Neuroimmunol, 2007, 184(1-2):53-68.
[13]del Zoppo G, Ginis I, Hallenbeck JM, et al. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia[J]. Brain Pathol, 2000, 10(1):95-112.
[14]Denes A, Wilkinson F, Bigger B, et al. Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice[J]. Dis Model Mech, 2013, 6(4):1043-1048.
[15]Pradillo JM, Denes A, Greenhalgh AD, et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats[J]. J Cereb Blood Flow Metab, 2012, 32(9):1810-1819.
[16]Yuan J. Neuroprotective strategies targeting apoptotic and necroticcell death for stroke[J]. Apoptosis, 2009, 14(4):469-477.
[17]Chen CH, Jiang Z, Yan JH, et al. The involvement of programmed cell death 5 (PDCD5) in the regulation of apoptosis in cerebral ischemia/reperfusion injury[J]. CNS Neurosci Ther, 2013, 19(8):566-576.
[18]Rossé T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c[J]. Nature, 1998, 391(6666):496-499.
[19]Maharjan S, Oku M, Tsuda M, et al. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition[J]. Sci Rep, 2014, 4:5896.
[20]Ge P, Luo Y, Liu CL, et al. Protein aggregation and proteasome dysfunction after brain ischemia[J]. Stroke, 2007, 38(12):3230-3236.
[21]Massaad CA. Neuronal and vascular oxidative stress in Alzheimer′sdisease[J]. Curr Neuropharmacol, 2011, 9(4):662-673.
[22]Lee CH, Yan B, Yoo KY, et al. Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia[J]. J Neurosci Res, 2011, 89(7):1103-1113.
[23]Atamna H, Kumar R. Protective role of methylene blue in Alzheimer′s disease via mitochondria and cytochrome coxidase[J]. J Alzheimers Dis, 2010, 20 (Suppl 2):S439-452.
[24]Ohlow MJ, Moosmann B. Phenothiazine: the seven lives of pharmacology′s first lead structure[J]. Drug Discov Today, 2011, 16(3-4):119-131.
[25]Rojas JC, Simola N, Kermath BA, et al. Striatal neuroprotection with methylene blue[J]. Neuroscience, 2009, 163(3):877-889.
[26]Rojas JC, John JM, Lee J, et al. Methylene Blue Provides Behavioral and Metabolic Neuroprotection Against Optic Neuropathy[J]. Neurotoxicity Research, 2009, 15(3):260-273.
[27]Pelgrims J, De Vos F, Van den Brande J, et al. Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: Report of 12 cases and a review of the literature[J]. Br J Cancer, 2000, 82(2):291-294.
[28]Roy Choudhury G, Winters A, Rich RM, et al. Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration[J]. PloS One, 2015, 10(4):e0 123 096.
[29]Muratsubaki H, Yajima N, Yoneda H, et al. Methylene blue protection against hypoxic injury in primary cultures of rat hepatocyte monolayers[J]. Cell Biochem Funct, 2008, 26(2):275-278.
[30]Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer′s disease[J]. Biochemical Pharmacology, 2009, 78(8):927-932.
[31]Di Y, He YL, Zhao T, et al. Methylene Blue Reduces Acute Cerebral Ischemic Injury via the Induction of Mitophagy[J]. Mol Med, 2015, 21:420-429.
[32]Wen Y, Li W, Poteet EC, et al. Alternative Mitochondrial Electron Transfer as a Novel Strategy for Neuroprotection[J]. J Biol Chem, 2011, 286(18):16 504-16 515.
[33]Jiang Z,Watts LT,Huang S,et al. The Effects of Methylene Blue on Autophagy and Apoptosis in MRI-Defined Normal Tissue, Ischemic Penumbra and Ischemic Core[J]. PLoS One, 2015, 10 (6), e0 131 929.
[34]Shen Q, Du F, Huang S, et al. Neuroprotective efficacy of methylene blue in ischemic stroke: an MRI study[J]. PloS One, 2013, 8(11):e79 833.
[35]Young GB. Clinical practice. Neurologic prognosis after cardiac arrest[J]. N Engl J Med, 2009, 361(6):605-611.
[36]Colbourne F, Sutherland G, Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment[J]. Mol Neurobiol, 1997, 14(3):171-201.
[37]Miclescu A, Sharma HS, Martijn C, et al. Methylene blue protects the cortical blood-brain barrier against ischemia/reperfusion-induced disruptions[J]. Crit Care Med, 2010, 38(11):2199-2206.
[38]Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain[J]. J Neural Transm(Vienna), 2011, 118(1):87-114.
[39]Gabrielli D, Belisle E, Severino D, et al. Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions[J]. Photochem Photobiol, 2004, 79(3):227-232.
[40]Atamna H, Nguyen A, Schultz C, et al. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways[J]. FASEB J, 2008, 22(3):703-712.
[41]de la Torre JC, Cada A, Nelson N, et al. Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats[J]. Neurosci Lett, 1997, 223(3):165-168.
[42]Callaway NL, Riha PD, Wrubel KM, et al. Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats[J]. Neurosci Lett, 2002, 332(2):83-86.
[43]Poteet E, Winters A, Yan LJ, et al. Neuroprotective actions of methylene blue and its derivatives[J]. PloS One, 2012, 7(10):e48 279.
[44]Brinkkoetter PT, Song H, L sel R, et al. Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance[J]. Cell Physiol Biochem, 2008, 22(1-4):195-204.
[45]Tian WF, Zeng S, Sheng Q, et al. Methylene Blue Protects the Isolated Rat Lungs from Ischemia-Reperfusion Injury by Attenuating Mitochondrial Oxidative Damage[J]. Lung, 2018,196(1):73-82.
[46]Li P, He QP, Ouyang YB, et al. Early release of cytochrome C and activation of caspase-3 in hyperglycemic rats subjected to transient forebrain ischemia[J]. Brain Res, 2001, 896(1-2):69-76.
[47]Ikeda Y, Shirakabe A, Maejima Y, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress Novelty and significance[J]. Circulation Research, 2015, 116(2):264-278.
[48]Wu H, Xue D, Chen G, et al. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy[J]. Autophagy, 2014, 10(10):1712-1725.
[49]Kubli DA, Gustafsson B. Mitochondria and mitophagy: the yin and yang of cell death control[J]. Circ Res, 2012, 111(9):1208-1221.
[50]Feng X, Liu X, Zhang W, et al. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death[J]. EMBO J,2011, 30(16): 3397-3415.
[51]Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagyby cytoplasmic p53[J]. Nat Cell Biol, 2008, 10(6):676-687.
[52]Xie L, Li W, Winters A, et al. Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation[J]. Front Cell Neurosci, 2013, 7:56.
[53]Fenn AM, Skendelas JP, Moussa DN, et al. Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice[J]. J Neurotrauma,2015, 32(2):127-138.
[54]Kwilasz AJ, Grace PM, Serbedzija P, et al. The therapeutic potential of interleukin-10 in neuroimmune diseases[J]. Neuropharmacology, 2015, 96(Pt A):55-69.
[55]Bachis A, Colangelo AM, Vicini S, et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity[J]. J Neurosci, 2001, 21(9):3104-3112.
[56]Zhou Z, Peng X, Insolera R, et al. Interleukin-10 provides direct trophic support to neurons[J]. J Neurochem, 2009, 110(5):1617-1627.
[57]Boyd ZS, Kriatchko A,Yang J,et al. Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress[J]. Invest Ophthalmol Vis Sci, 2003, 44 (12), 5206-5211.
[58]Sharma S, Yang B, Xi X, et al. IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways[J]. Brain Res, 2011, 1373:189-194.
[59]Turovskaya MV, Turovsky EA, Zinchenko VP, et al. Interleukin-10 modulates [Ca2+]i response induced by repeated NMDA receptor activation with brief hypoxia through inhibition of InsP(3)-sensitive internal stores in hippocampal neurons[J]. Neurosci Lett, 2012, 516(1):151-155.
[60]Obrenovitch TP, Urenjak J. Altered glutamatergic transmission in neurological disorders: From high extracellular glutamate to excessive synaptic efficacy[J]. Prog Neurobiol, 1997, 51(1):39-87.
[61]Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury[J]. Trends Neurosci, 1997, 20(3):132-139.
[62]Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia[J]. Stroke, 1997, 28(6):1283-1288.
[63]Dawson VL, Dawson TM. Nitric oxide neurotoxicity[J]. J Chem Neuroanat, 1996, 10(3-4):179-190.
[64]Huang C, Tong L, Lu X, et al. Methylene Blue Attenuates iNOS Induction Through Suppression of Transcriptional Factor Binding Amid iNOS mRNA Transcription[J]. J Cell Biochem, 2015, 116(8):1730-1740.
[65]Jiang MH, Kaku T, Hada J, et al. Different effects of eNOS and nNOS inhibition on transient forebrain ischemia[J]. Brain Res, 2002, 946(1):139-147.
[66]Wolin MS, Cherry PD, Rodenburg JM, et al. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion[J]. J Pharmacol Exp Ther, 1990, 254(3):872-876.
[67]Gruetter CA, Kadowitz PJ, Ignarro LJ. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite[J]. Can J Physiol Pharmacol, 1981, 59(2):150-156.
[68]Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue[J]. Biochem Pharmacol, 1993, 45(2):367-374.
[69]Wei G, Dawson VL, Zweier JL. Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia[J]. Biochim Biophys Acta, 1999, 1455(1):23-34. |
|
|
|