|
|
|
|
|
NLRP3 inflamasome—the core of acute lung injury |
Luo Ya-lan, Xu Cai-ming, Li Zhao-xia, Jiang Liu, Chen Hai-long |
Department of Abdominal Emergency Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China |
|
|
Abstract A variety of clinical conditions can lead to acute lung injury (ALI), and there hasn′t been any specific measure so far to block the progression of the disease. Uncontrolled lung inflammation is an important mechanism for the development of ALI. This article mainly explores the role of NLRP3 inflamasome and their associated signaling pathways in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and this can provide novel therapeutic targets for the treatment of ALI/ARDS
|
|
Corresponding Authors:
Chen Hai-long, E-mail: hailongchen2013@163.com
|
|
|
|
[1]Sweatt AJ, Levitt JE. Evolving epidemiology and definitions of the acute respiratory distress syndrome and early acute lung injury[J]. Clin Chest Med, 2014, 35(4): 609-624.
[2]Wasserman SI. The lung mast cell: its physiology and potential relevance to defense of the lung[J]. Environ Health Perspect, 1980, 35: 153-164.
[3]Said SI. Environmental injury of the lung: role of humoral mediators[J]. Fed Proc, 1978, 37(11): 2504-2507.
[4]Tasaka S. Acute lung injury/acute respiratory distress syndrome: progress in diagnosis and treatment. topics: I. Pathogenesis and pathophysiology; 3. Pathogenesis and pathophysiology of ALI/ARDS[J]. Nihon Naika Gakkai Zasshi, 2011, 100(6): 1529-1535.
[5]Levitt JE, Matthay MA. Treatment of acute lung injury: historical perspective and potential future therapies[J]. Semin Respir Crit Care Med, 2006, 27(4): 426-437.
[6]Rice TW, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: challenges in clinical trial design[J]. Clin Chest Med, 2006, 27(4): 733-754.
[7]Ting JP, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature[J]. Immunity, 2008, 28(3): 285-287.
[8]Magalhaes JG, Sorbara MT, Girardin SE, et al. What is new with Nods[J]. Curr Opin Immunol, 2011, 23(1): 29-34.
[9]Chen G, Shaw MH, Kim YG, et al. NOD-like receptors: role in innate immunity and inflammatory disease[J]. Annu Rev Pathol, 2009, 4: 365-398.
[10]Mayor A, Martinon F, De Smedt T, et al. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses[J]. Nat Immunol, 2007, 8(5): 497-503.
[11]Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665.
[12]Su WJ, Zhang Y, Chen Y, et al. NLRP3 gene knockout blocks NF-κB and MAPK signaling pathway in CUMS-induced depression mouse model[J]. Behav Brain Res, 2017, 322(Pt A):1-8
[13]Munoz-Planillo R, Kuffa P, Martinez-Colon G, et al. K+efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter[J]. Immunity, 2013, 38(6): 1142-1153.
[14]Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor[J]. EMBO J, 2006, 25(21): 5071-5082.
[15]He Y, Zeng MY, Yang D, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J]. Nature, 2016, 530(7590): 354-357.
[16]Shimada K, Crother TR, Karlin J, et al. Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection[J]. PLoS One, 2011,6(6):e21 477.
[17]Cassel SL, Eisenbarth SC, Iyer SS, et al. The Nalp3 inflammasome is essential for the development of silicosis[J]. Proc Natl Acad Sci USA, 2008, 105(26): 9035-9040.
[18]Brady NR, Hamacher-Brady A, Westerhoff HV, et al. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria[J]. Antioxid Redox Signal, 2006, 8(9-10): 1651-1665.
[19]Meng Y, Pan M, Zheng B, et al. Autophagy Attenuates Angiotensin Ⅱ-Induced Pulmonary Fibrosis by Inhibiting Redox Imbalance-Mediated NOD-Like Receptor Family Pyrin Domain Containing 3 Inflammasome Activation[J]. Antioxid Redox Signal, 2019,30(4):520-541.
[20]Zhu W, London NR, Gibson CC, et al. Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability[J]. Nature, 2012, 492(7428): 252-255.
[21]Peteranderl C, Sznajder JI, Herold S, et al. Inflammatory Responses Regulating Alveolar Ion Transport during Pulmonary Infections[J]. Front Immunol, 2017, 8: 446.
[22]Dinarello CA, Novick D, Kim S, et al. Interleukin-18 and IL-18 binding protein[J]. Front Immunol, 2013, 4: 289.
[23]Li D, Ren W, Jiang Z,et al. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury[J]. Mol Med Rep, 2018, 18(5):4399-4409.
[24]张维康. NLRP3炎症复合体在呼吸机相关性肺损伤中的作用机制研究[D].广西:广西医科大学,2016.
[25]Yang X, Sun X, Chen H, et al. The protective effect of dopamine on ventilator-induced lung injury via the inhibition of NLRP3 inflammasome[J]. Int Immunopharmacol, 2017, 45: 68-73.
[26]Wang Y, Xu CF, Liu YJ, et al. Salidroside Attenuates Ventilation〖JP〗 Induced Lung Injury via SIRT1-Dependent Inhibition of NLRP3 Inflammasome[J]. Cell Physiol Biochem, 2017, 42(1): 34-43.
[27]Kuipers MT, Aslami H, Janczy JR, et al. Ventilator-induced lung injury is mediated by the NLRP3 inflammasome[J]. Anesthesiology, 2012, 116(5): 1104-1115.
[28]Wu J, Yan Z, Schwartz DE, et al. Activation of NLRP3 inflammasome 〖JP3〗in alveolar macrophages contributes to mechanical stretchi-〖JP〗nduced lung inflammation and injury[J]. J Immunol, 2013, 190(7): 3590-3599.[29]Land WG. Transfusion-Related Acute Lung Injury: The Work of DAMPs[J]. Transfus Med Hemother, 2013, 40(1): 3-13.
[30]Hosseinian N, Cho Y, Lockey RF, et al. The role of the NLRP3 inflammasome in pulmonary diseases[J]. Ther Adv Respir Dis, 2015, 9(4): 188-197.
[31]Fukumoto J, Fukumoto I, Parthasarathy PT, et al. NLRP3 deletion protects from hyperoxia-induced acute lung injury[J]. Am J Physiol Cell Physiol, 2013, 305(2): C182-189.
[32]Mizushina Y, Shirasuna K, Usui F, et al. NLRP3 protein deficiency exacerbates hyperoxia-induced lethality through Stat3 protein signaling independent of interleukin-1β[J]. J Biol Chem, 2015, 290(8): 5065-5077.
[33]Kerr NA, de Rivero Vaccari JP, Abbassi S, et al. Traumatic 〖JP2〗Brain Injury-Induced Acute Lung Injury: Evidence for Activation〖JP〗 and Inhibition of a Neural-Respiratory-Inflammasome Axis[J]. J Neurotrauma, 2018, 35(17): 2067-2076.
[34]He DK, Shao YR, Shen J, et al. Significance of the NLRP3 inflammasome expression in rats with acute lung injury induced by phosgene[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2017, 35(7): 491-496.
[35]Yang J, Zhao Y, Zhang P, et al. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS[J]. Cell Death Dis, 2016, 7(9): e2363.
[36]Tang F, Fan K, Wang K, et al. Atractylodin attenuates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome and TLR4 pathways[J]. J Pharmacol Sci, 2018, 136(4): 203-211.
[37]Zhou F, Zhang Y, Chen J, et al. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice[J]. Eur J Pharmacol, 2016, 791: 735-740.
[38]Jiang L, Zhang L, Kang K, et al. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation[J]. Biomed Pharmacother, 2016, 84: 130-138. |
|
|
|